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Stability Analysis of Reference Compensation Technique for Controlling
Robot Manipulators by Neural Network
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Abstract: Neural network control for robot manipulators is aimed to compensate for uncertainties in the robot
dynamics. The location of a compensating point differentiates the control scheme into two categories, the feedback
error learning (FEL) scheme and the reference compensation technique (RCT). The RCT scheme is relatively less
used although it has several structural advantages. In this paper, the global stability of the RCT scheme is analyzed
on the basis of Lyapunov function. The analysis turns out that the stability depends upon the magnitude of the
controller gains. Simulation studies of controlling the position of a two-link robot manipulator are conducted.
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1. INTRODUCTION

The terminology of ‘Intelligence’ is used everywhere
to humanize the system by mimicking human brain func-
tions to deal with various applications. Intelligent robots
or intelligent systems are one of leading areas of applying
intelligence to the machines.

To apply intelligence to the system, appropriate intel-
ligent tools such as neural network, fuzzy logic, genetic
algorithms or others are selected to satisfy performance
specifications.

For the real-time control applications, neural networks
and fuzzy logic are used most among them. Fuzzy logic
is a powerful tool to transfer semantic human expression
to numerical machine expression. Although determining
optimal fuzzy rules requires a time consuming process,
fuzzy logic can be duplicated with ease on the embedded
system once rules are found. This is the reason why many
fuzzy-related products are on the market.

Neural networks are a massive parallel computing
structure that mimics human brain functions. Neural net-
works have the capabilities of mapping any nonlinear
functions, of learning and adapting the environment, and
of generalizing the data if input and output data are given.
No rules are adjusted, but internal weights are automati-
cally learned.

Neural network control for robot manipulators has been
one of active research areas in robotics, control, and in-
telligent system communities. A simple idea of replac-
ing a feedforward controller with a neural network con-
troller provides on-line learning and control capability.

This scheme is called feedback error learning (FEL) con-
trol [1]. In the literature, a majority of neural network
control applications uses this scheme because the stabil-
ity of initial learning stage can be guaranteed by feedback
controllers and the inverse of the system can eventually be
learned at the convergence.

In the framework of the FEL scheme, similar control
schemes along with the stability analysis have been pro-
posed. A neural network controller is designed for con-
trolling a 5 DOF robot manipulator [2]. Stability analysis
of a RBF neural network control scheme has been done for
a robot manipulator [3]. Neural network control for mul-
tiple robotic manipulators has been presented [4]. Neural
network control schemes along with sliding mode control
or back stepping control have been presented [5,6]. Stabil-
ity analysis of the FEL scheme for robot manipulator con-
trol has been extensively presented by reformulating robot
dynamic equation with tracking error functions along with
simulation results [7].

In a meanwhile, the modification of the control struc-
ture by moving the compensating position of a neural net-
work yields several structural advantages. Since the neural
network compensates at the trajectory level, this scheme is
called the reference compensation technique (RCT) [8,9].
Although the RCT scheme has been successfully applied
to real robot systems, the stability of the RCT controlled
system has not been addressed while the stability of FEL
scheme has been addressed heavily in the literature [10].

Therefore, in this paper, the stability of RCT scheme
based on the Lyapunov sense for controlling position of
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robot manipulators is analyzed. Simulation studies are
conducted.

2. ROBOT MANIPULATOR DYNAMICS

The dynamic equation of an n degrees-of-freedom robot
manipulator in the joint space coordinates is given by

D(q)§+C(q,9)q+G(q) =1, ey

where the vectors g is the n x 1 joint angle, ¢ is the n x

1 joint angular velocity, and § is the n x 1 joint angular

acceleration, D(g) is the n X n symmetric positive definite

inertia matrix, C(gq,§)q is the n x 1 Coriolis and centrifugal

torque vector, G(g) is the n x 1 gravitational torque vector,

and 7 is the n x 1 vector of actuator joint torque vector.
Define the trajectory tracking errors as

€=d{qa—¢, e:qd_q’ e:qd_q7 (2)

where g, is the reference trajectory. Based on (2), we de-
fine the error surface function as

s=é+Ae, s=é+Ae. 3)
Rearranging ¢, ¢ from (3) in terms of s, s yields
G=qa—(s—Ae), §=da—(5—Aé). “

Substituting ¢, ¢ in (4) into (1) yields the modified dy-
namic equation of robot manipulators in terms of s [7].

fla,q)—(Ds+Cs) =1 &)

where f(q,4) = D(q)(Ga + Aé) + C(4a + Ae) + G(q)
which includes all the uncertainties. This term is expected
to be cancelled out through the compensation process by
a neural network. As a result, equation (5) satisfies the
stability with ease since the closed loop equation becomes
the function of the error s when the controller is designed
with the function of the error s.

3. NEURAL NETWORK STRUCTURE

Here a multilayered perceptron network with linear out-
put structure is used. The neural network has one hidden
layer and one output layer as shown in Fig. 1. The nonlin-
ear function of the hidden layer is given as the sigmoidal
function.

The output of the hidden unit is defined as

_ 1= exp(— L)
1+exp(— L)

wj(xi) (©)

where x; is the ith input element and N; is the number of
input ellements.

| [ Hidden layer ] ‘

I [ Input layer] ‘

I [ Output layer ] |

Fig. 1. Neural network structure.

The output is summed together as a linear function.
Ny
fi=Y wiwi+by, (7
j=1

where y; is jth output of the hidden layer and w; is the
weight between the jth hidden unit and the kth output, by
is the bias weight of the kth output, and Nyis the number
of hidden units.

4. REFERENCE COMPENSATION TECHNIQUE

4.1. PD control structure

The RCT scheme has been known as an input shaping
nonlinear controller that uses a neural network as an aux-
iliary controller while a feedback controller is considered
as a main controller. Neural network outputs are compen-
sated at the desired trajectory level. Initial transient stabil-
ity is guaranteed by the feedback controller and the final
steady state is governed by a neural network controller.

The RCT scheme provides some structural advantages.
Since neural network compensation is done at the refer-
ence input level, the feedback controller cannot be modi-
fied while FEL requires the modification of the feedback
controller when neural network control is implemented
to control systems. Neural compensation can be done
through wireless communication so that unmanned air-
crafts like drones can be controlled remotely from the
ground.

Consider a PD controlled robot system as shown in Fig.
2. The PD controller output becomes

Tc = Kpé+ Kpe
=K(e+Ae) ®)
= K,

where K is the controller gain such as K = Kp.
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Fig. 2. PD control structure.

Combining (8) with (5) yields the closed error equation
as

Ds+(C+K)s = f(q,9). 9

To satisfy the tracking error s = 0, the function f(g,q)
should be zero. Neural network is used for this purpose.
Neural network is required to compensates for the func-

tion f(g,q) as
where @ is the neural network output.

4.2. RCT scheme 1

Neural network outputs are added to the reference tra-
jectories as shown in Fig. 3. The addition of the compen-
sating signals from the neural network forms the closed
error equation as below.

T=K(ga— 4+ Gn+2A(qa—q+4qn))
:K(é+2’6) +K(q'n+7t%) (1D
:K(S+q>]),

where ¢,, ¢, are neural network outputs and ®; = ¢, +
Ag,.

Combining (11) with (5) yields the closed loop error
equation as

Ds+(C+K)s = f(q,9) — KPr, (12)

where @ is the neural network output.
If neural network output cancels out the function
f(q,q), then (12) becomes

Ds+(C+K)s=0. (13)
Define the training signals v as

v=K(é+Ae) =Ks. (14)
Then (12) becomes

V= ’L'—K(q',, +)~Qn)
=1—K®P,. 15)
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Fig. 4. RCT control structure II.

4.3. RCT scheme 2

A simplified RCT structure is shown in Fig. 4. Neural
network output is added to the joint angle only. Addition
of the compensating signals to the PD controlled system
yields the closed error equation.

T=K(Gga—G+2(qa—q+qn))
K(é+2ie)+KAg, (16)
= K(S—|—q)”)7

where ®;; = Aq,,.
Combining (16) with (5) yields the closed loop error
equation as

Ds+ (C+K)s = f(q,q) — K. (17)
Then (17) becomes
v="1—KAgq,
= ’L'—K(I)". (18)

4.4. Learning process

Learning of the neural network uses the back-
propagation algorithm to update weights. Since we need
to minimize the feedback control error v instead of e, the
objective function to be minimized is formed as

17
E = Ev v, (19)
where v € R™! is considered as the training signal.

The gradient with respect to the weight is used and cal-
culated to minimize the objective function as

JE JE dv

AW:—ni =

w3y aw (20)



Stability Analysis of Reference Compensation Technique for Controlling Robot Manipulators by Neural Network 955

where 7 is the learning rate and w is the weight vector.
The gradient can be obtained from (15) and (18) as

0 0P
Aw=—nﬁv=n[%]TKv, 1)

where ® can be either ®; or Py;.
Weights are updated at every sampling time as

w(t+1)=w(t)+Aw(t) + oAw(t — 1), (22)

where « is the momentum constant.

5. STABILITY ANALYSIS

The universal approximation property of neural net-
work gives the function as

fla.q) =KW y+e, (23)

where W is the weight matrix, y is the output vector of
the hidden layer, € is the approximation error, and K is the
constant diagonal matrix.

From (11) and (16) the control law becomes the mul-
tiplication of gain K to the addition of the feedback con-
troller and the neural network output.

=KW y+s). (24)

Substituting (23) and (24) into (5) yields the closed loop
error equation.

Ds+(C+K)s=KW'y +e, (25)

where WT = WT —W7 and W7 is the true weights, W7 is
the approximation of the weight.
Define the Lyapunov function as

1 1. - N
L= EsTDsJr ETr{WTF’IW}, (26)

where T'r is Trace of the matrix.
Differentiating (26) yields

A 5 .
L= EsTDs +s'Ds+Tr{iw T 'W}. (27)
From (25)
Ds =KW y— (C+K)s+e. (28)

Substituting Ds of (28) into (27) yields
o1 .
L :EST(D —2C)s—s"Ks
+Tr{WT (C"'W + Kys")} +5"e. (29)

Using the skew symmetry property of robot manipula-
tor D —2C = 0 simplifies (29) as

L=—s"Ks+Tr{w" (Fflﬁ/ +Kys")}+sTe. (30)

To guarantee the stability, we select the update law for
the weights as

W=W*'-W=-W=-TKys". (31)

Substituting the update law W= TKys! into (30)
yields

L=—s"Ks+s'e. (32)

To satisfy L < 0 for the stability, we can select the con-
troller gain to satisfy the following condition.

K| > (33)

Let us compare the update equations of (21) and (31). For
simplicity, consider the RCT scheme II of which neural
network output is compensated at the position only, not at
the velocity level.

From (21), the gradient of 9%y

W

can be obtained as
8<I>11 _ aq,,
aw oW’
Since the neural network output g,is the summation, it
is described as

(34)

g =W"y. (35)

The gradient of (35) with respect to W becomes

94
= . 36
ow ¥ (36)
Therefore, the update equation becomes
oy,
=Ay. 37
W y 37)

Therefore, the update equation (21) can be described as

AW = nAKyv
=TKys, (38)

where v =s7 and " = nA. Ultimately (38) is same as (31).

6. SIMULATION STUDIES

6.1. Simulation setup

A two-link robot manipulator is used for the simulation
studies. The mass of each link is 5 Kg and its length is
0.4 m. Initial joints are set to [0.7854, —0.7854] as shown
in Fig. 5. The robot is commanded to follow the desired
trajectories such as sinusoidal motions at each joint.

The following friction term is added to each joint as an
uncertainty of the robot system.

f = sign(q) x (k; xabs(q) + k), (39)

where ki, kpare friction coefficients.
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Fig. 5. Initial robot configuration.

6.2. PD control

PD gains are set to 100, 20 for Kp and Kp, respectively
to give the critically damped response. PD controller gains
are selected to have the critical response for the second or-
der system. Given the same PD controller gains, our goal
is to see the performance by a neural network controller.

Fig. 6 shows the tracking performance by PD con-
trollers. Notable tracking errors due to uncertainties in
robot dynamics are observed. Because of the coupled ef-
fect, the error of the joint 1 is larger than that of joint 2.
The tacking error can be minimized with the model based
control method.

6.3. Neural network control

Next experiment is to use the neural network structure
in Fig. 1. Neural network has 6 hidden units. The learning
rate of 0.00005 is tested and compared. Scheme II is used.
Fig. 8 shows the tracking performance.

Fig. 8 shows the comparison plot between the propor-
tional control error and a neural network output before
controller gains are multiplied. Since the neural network
output is added to the reference trajectory to compensate
for the error, P error is close to zero after 0.5 seconds.
We also note that the pattern of the compensating signal is
similar to the tracking error by the PD controller shown in
Fig. 6(b), which means that the neural network compen-
sates for the tracking error.

6.4. Effects of unknown payloads

Since it is worth to know the performance of the RCT
control method for the effect of the dynamic parameter
change, Skg of a payload is added to the end-effector. Fig.
9 shows the tracking responses for the PD control and the
RCT control method. We clearly see the better tracking
performance by the RCT control method.

6.5. Effects of learning rate

The learning rate is quite a sensitive parameter to the
stability although the global stability is guaranteed. At
first, the learning rate is selected as a small value such as
0.000001 and then the learning rate is increased to maxi-
mize the tracking performance.

We have learned that the larger learning rate provides
the better tracking performance. It is sensitive that the
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Fig. 6. PD control performance (Kp = 100, K; = 20).

performance depends upon the learning rate. The leaning
rate is selected as large as possible. However, we cannot
keep increasing the learning rate. The learning rate has
a limit to be increased for the stable performance. For
instance, when 11 = 0.0001 is used, the system becomes
easily unstable.

6.6. Comparison with feedback error learning control
method

Next simulation is to compare with the feedback error
learning (FEL) control method. The major difference be-
tween RCT and FEL is the compensating location of neu-
ral network in the control loop. Fig. 10 shows the tracking
performances of RCT and FEL which are very compati-
ble. The corresponding neural network outputs are plotted
in Fig. 11. We see that the output of FEL is much larger
than that of RCT. However, when the controller gain Kp
(100) is multiplied to the neural network output of RCT
scheme, they are almost similar in magnitude as shown in
the bottom plot of Fig. 11.
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7. CONCLUSION

The RBF-like network is used as a neural controller
for controlling the position of a robot manipulator. Neu-
ral network compensates for uncertainties at the trajectory
level. Stability of the RCT neural network control scheme
was analyzed in terms of energy function. It turns out that
the RCT scheme is comparable to the FEL scheme. But
the RCT scheme shows the structural advantages. Stabil-
ity analysis shows that only difference between FEL and
RCT scheme is the controller gain K, which can be in-
cluded in the learning rate.

(1]

(2]

(3]

REFERENCES

H. Gomi and M. Kawato, “Learning control for a closed
loop system using feedback error learning,” Proc. of the
IEEE International Conf. on Decision and Control, pp.
3289-3294, 1990.

X. Xie, L. Cheng, Z. Hou, and C. Ji, “Adaptive neural net-
work control of a 5 DOF robot manipulator,” Proc. of Int.
Conf. on Intelligent Control and Information Processing,
pp- 376-381, 2010.

Y. Wu, Q. He, and C. Wang, “Adaptive neural learning con-
trol of rigid-link electrically-driven robot manipulators,”
Proceedings of the 30th Chinese Control Conference, pp.
6616-6622, 2011.

(4]

(6]

(7]

(9]

(10]

D. Zhao, Q. Zhu, N. Li, and S. Li, “Neural network based
synchronized control for multiple robotic manipulators,”
Proc. of IEEE Conf. on Control and Automation, pp. 1950-
1955, 2013.

R.J. Wai and R. Muthusamy, “Fuzzy-neural network inher-
ited sliding-mode control for robot manipulator including
actuator dynamics,” IEEE Trans. on Neural Network and
Learning Systems, vol. 24, no. 2, pp. 274-287, 2013.

R. J. Wai and R. Muthusamy, “Design of fuzzy-neural-
network-inherited backstepping control for robot manipu-
lator including actuator dynamics,” IEEE Trans. on Fuzzy
Systems, vol. 22, no. 4, pp. 709-722, 2014.

F. L. Lewis, S. Jagannathan, and A Yesildirek, Neural Net-
work Control of Robot Manipulators and Nonlinear Sys-
tems, Taylor & Francis, 1999.

S. Jung and T. C. Hsia, “Neural network inverse control
techniques for PD controlled robot manipulator,” Robotica,
vol. 19, no. 3, pp. 305-314, 2000.

S. Jung and H. T. Cho, “Decoupled neural network refer-
ence compensation technique for a PD controlled two de-
grees of freedom inverted pendulum,” International Jour-
nal of Control, Automation, and Systems Engineering, vol.
2, no. 1, pp. 92-99, 2004.

S. S. Ge and C. Wang, “Direct adaptive NN control of a
class of nonlinear systems,” IEEE Trans. on Neural Net-
works, vol. 13, no. 1, pp. 214-221, 2002.



